Scan barcode
![Symplectic Geometry of Integrable Hamiltonian Systems by Michèle Audin, Eugene Lerman, Ana Cannas Da Silva](https://558130.bdp32.group/rails/active_storage/representations/redirect/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaHBBNWRReFE9PSIsImV4cCI6bnVsbCwicHVyIjoiYmxvYl9pZCJ9fQ==--e5e56ecd22ed085cecdc04991f7eefcd182c38b2/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaDdCem9MWm05eWJXRjBTU0lJYW5CbkJqb0dSVlE2RkhKbGMybDZaVjkwYjE5c2FXMXBkRnNIYVFJc0FXa0M5QUU9IiwiZXhwIjpudWxsLCJwdXIiOiJ2YXJpYXRpb24ifX0=--038335c90cf75c275ae4d36968ac417dc4a0a3e3/Symplectic%20Geometry%20of%20Integrable%20Hamiltonian%20Systems.jpg)
226 pages • missing pub info (editions)
ISBN/UID: 9783764321673
Format: Paperback
Language: English
Publisher: Birkhauser
Publication date: 24 April 2003
Description
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact th...
Community Reviews
Content Warnings
![Symplectic Geometry of Integrable Hamiltonian Systems by Michèle Audin, Eugene Lerman, Ana Cannas Da Silva](https://558130.bdp32.group/rails/active_storage/representations/redirect/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaHBBNWRReFE9PSIsImV4cCI6bnVsbCwicHVyIjoiYmxvYl9pZCJ9fQ==--e5e56ecd22ed085cecdc04991f7eefcd182c38b2/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaDdCem9MWm05eWJXRjBTU0lJYW5CbkJqb0dSVlE2RkhKbGMybDZaVjkwYjE5c2FXMXBkRnNIYVFJc0FXa0M5QUU9IiwiZXhwIjpudWxsLCJwdXIiOiJ2YXJpYXRpb24ifX0=--038335c90cf75c275ae4d36968ac417dc4a0a3e3/Symplectic%20Geometry%20of%20Integrable%20Hamiltonian%20Systems.jpg)
226 pages • missing pub info (editions)
ISBN/UID: 9783764321673
Format: Paperback
Language: English
Publisher: Birkhauser
Publication date: 24 April 2003
Description
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact th...