Scan barcode
![Mathematical Proofs: A Transition to Advanced Mathematics by Albert D. Polimeni, Gary Chartrand, Ping Zhang](https://558130.bdp32.group/rails/active_storage/representations/redirect/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaHBBOUo2Q2c9PSIsImV4cCI6bnVsbCwicHVyIjoiYmxvYl9pZCJ9fQ==--fc152c0698ac390cc1625b0521c14441ee255095/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaDdCem9MWm05eWJXRjBTU0lJYW5CbkJqb0dSVlE2RkhKbGMybDZaVjkwYjE5c2FXMXBkRnNIYVFJc0FXa0M5QUU9IiwiZXhwIjpudWxsLCJwdXIiOiJ2YXJpYXRpb24ifX0=--038335c90cf75c275ae4d36968ac417dc4a0a3e3/Mathematical%20Proofs-%20A%20Transition%20to%20Advanced%20Mathematics.jpg)
365 pages • first pub 2002 (editions)
ISBN/UID: None
Format: Not specified
Language: English
Publisher: Not specified
Publication date: Not specified
Description
Mathematical Proofs: A Transition to Advanced Mathematics, Second Edition, prepares students for the more abstract mathematics courses that follow calculus. This text introduces students to proof techniques and writing proofs of their own. As such...
Community Reviews
Content Warnings
![Mathematical Proofs: A Transition to Advanced Mathematics by Albert D. Polimeni, Gary Chartrand, Ping Zhang](https://558130.bdp32.group/rails/active_storage/representations/redirect/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaHBBOUo2Q2c9PSIsImV4cCI6bnVsbCwicHVyIjoiYmxvYl9pZCJ9fQ==--fc152c0698ac390cc1625b0521c14441ee255095/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaDdCem9MWm05eWJXRjBTU0lJYW5CbkJqb0dSVlE2RkhKbGMybDZaVjkwYjE5c2FXMXBkRnNIYVFJc0FXa0M5QUU9IiwiZXhwIjpudWxsLCJwdXIiOiJ2YXJpYXRpb24ifX0=--038335c90cf75c275ae4d36968ac417dc4a0a3e3/Mathematical%20Proofs-%20A%20Transition%20to%20Advanced%20Mathematics.jpg)
365 pages • first pub 2002 (editions)
ISBN/UID: None
Format: Not specified
Language: English
Publisher: Not specified
Publication date: Not specified
Description
Mathematical Proofs: A Transition to Advanced Mathematics, Second Edition, prepares students for the more abstract mathematics courses that follow calculus. This text introduces students to proof techniques and writing proofs of their own. As such...